AlgoProfessor ML/DATA Scientist Syllabus

Week 1, 2 & 3: Fundamentals of Python Programming, Mathematics, Probability and Statistics & optimization

Python for ML/Data Science:

Introduction ,Python, Anaconda and relevant packages installations, Why learn Python?

Keywords and Identifiers

Comments, Indentation, and Statements

Variables and Data types in Python

Standard Input and Output

Operators

Control flow: If...else , while loop ,for loop , break and continue

Lists ,Tuples ,Sets, Dictionary ,Strings

Types of Functions, Function Arguments

Recursive Functions, Lambda Functions

Mathematics : Linear Algebra All Concepts w.r.to ML/Data Science

Probability and Statistics: Introduction to Probability and Statistics.

Gaussian/Normal Distribution and its PDF(Probability Density Function).

CDF(Cumulative Density Function) of Gaussian/Normal Distribution

Standard normal variate (z) and standardization.

Sampling distribution & Central Limit Theorem

Discrete and Continuous Uniform distributions

Bernoulli and Binomial distribution

Hypothesis Testing methodology, Null-hypothesis, p-value

Optimization: All Concepts Related ML/ Data Science

Week 4, 5 &6: Python ML/Data Science Libraries: NumPy, Pandas ,Matplotlib, Seaborn

NumPy :

Introduction to NumPy, NumPy Arrays,

NumPy Indexing and Selection

NumPy Operations,

Operations on NumPy Array

Pandas :

Introduction to Pandas, Series

DataFrames : Creating a DataFrame, Working with Columns, Working with Rows, Conditional Filtering

Missing Data ,GroupBy Operations

Combining DataFrames : Concatenation, Inner Merge, Left and Right Merge, Outer Merge

Pandas - Time Methods for Date and Time Data

Pandas Input and Output - CSV Files

Pandas Input and Output - HTML Tables

Pandas Input and Output - Excel Files

Pandas Input and Output - SQL Databases

Matplotlib :

Introduction to Matplotlib

Matplotlib Basics

Matplotlib - Understanding the Figure Object

Matplotlib - Figure Parameters

Matplotlib – SubPlots Matplotlib Styling – Legends Matplotlib Styling - Colors and Styles Seaborn Introduction to Seaborn Scatterplots with Seaborn Distribution Plots Categorical Plots Seaborn - Comparison Plots - Understanding the Plot Types Seaborn Grid Plots Seaborn - Matrix Plots

Week 7,8 &9: ML Supervised Algorithms With Examples

[Linear Regression, Logistic Regression, KNN, Support Vector Machines, Decision Tree, Random Forests, Boosting Methods]

Linear Regression & Project Based Model

Introduction to Linear Regression Linear Regression - Understanding Ordinary Least Squares Linear Regression - Cost Functions Linear Regression - Gradient Descent Python coding Simple Linear Regression Linear Regression - Scikit-Learn Train Test Split Linear Regression - Scikit-Learn Performance Evaluation – Regression Linear Regression - Model Deployment and Coefficient Interpretation Polynomial Regression - Creating Polynomial Features Polynomial Regression - Training and Evaluation Polynomial Regression - Choosing Degree of Polynomial Polynomial Regression - Model Deployment L1 and L2 Regularization - Elastic Net

Logistic Regression & Project Based Model

Introduction to Logistic Regression Logistic Regression - Theory and Intuition Logistic Regression with Scikit-Learn Classification Metrics - Confusion Matrix and Accuracy Classification Metrics - Precison, Recall, F1-Score Classification Metrics - ROC Curves Multi-Class Classification with Logistic Regression KNN & Project Based Model Introduction to KNN KNN Classification - Theory and Intuition KNN Coding with Python

Support Vector Machines

Introduction to Support Vector Machines

SVM - Theory and Intuition - Hyperplanes and Margins

SVM - Theory and Intuition - Kernel Intuition

SVM - Theory and Intuition - Kernel Trick and Mathematics

SVM with Scikit-Learn and Python - Classification

SVM with Scikit-Learn and Python - Regression

Decision Tree

Decision Tree - Understanding Gini Impurity

Constructing Decision Trees with Gini Impurity

Decision Trees with Python

Random Forests

Introduction to Random Forests Section

Random Forests - Key Hyperparameters

Random Forests - Bootstrapping and Out-of-Bag Error

Coding Classification with Random Forest Classifier

Coding Regression with Random Forest

Boosting Methods

Introduction to Boosting Section AdaBoost Theory and Intuition, AdaBoost Coding Gradient Boosting Theory Gradient Boosting Coding

Week 10,11&12 : ML Unsupervised Algorithms With Examples [K-Means Clustering, Hierarchical Clustering, DBSCAN, Principal Component Analysis, T-distributed stochastic neighborhood embedding]

K-Means Clustering Introduction to K-Means Clustering

K-Means Clustering Theory

K-Means Clustering Coding

K-Means Color Quantization

Hierarchical Clustering

Introduction to Hierarchical Clustering

Hierarchical Clustering - Theory and Intuition

Hierarchical Clustering – Coding

DBSCAN

Introduction to DBSCAN

DBSCAN - Theory and Intuition

DBSCAN versus K-Means Clustering

DBSCAN - Hyperparameter Tuning Methods

DBSCAN - Python Code

Principal Component Analysis

Introduction to Principal Component Analysis PCA Theory and Intuition PCA - Manual Implementation in Python PCA - SciKit-Learn

T-distributed stochastic neighborhood embedding (t-SNE) What is t-SNE?

Neighborhood of a point, Embedding t-SNE on MNIST

Week 13,14&15 : Reinforcement learning, Deep Learning Algorithms With Examples

Reinforcement Learning

The Markov decision process (MDP) Types of Markov decision process Reward vs Return Discount factor Bellman equations Solving a Markov decision process MDP in code Reinforcement Learning Coding

Deep Learning Deep Learning: Neural Networks. Deep Learning: Deep Multi-layer perceptrons Deep Learning: Tensorflow and Keras Deep Learning: Convolutional Neural Nets Deep Learning: Long Short-Term Memory (LSTMS) Deep Learning generative Adversarial Networks(GANs) Attention Models in Deep Learning Deep Learning Real-World Case Studies

Dr Satyanarayana S